Подробнее здесь: https://форум-авто35.рф/post.php?fid=28

3. Узлы и элементы ЭСУД
Автор: А.М. Банов
Добавлено: 2006-05-12 21:17:40

 
В этой части мы более подробно опишем работу элементов системы, связанные с ними возможные неисправности и методы их диагностики. К неисправностям элементов ЭСУД можно отнести и нарушения в цепях соединений этих элементов в системе. Зачастую плохой контакт в соединительных разъемах или поврежденном проводе может быть принят за неисправность работы узла или датчика системы.

С описанием ЭСУД и ее составных элементов можно познакомиться в руководствах по диагностике и ремонту ЭСУД для автомобилей ВАЗ.

1. Лампа «Проверь двигатель»

Лампа «Проверь двигатель» располагается на панели приборов автомобиля и должна загораться после включения замка зажигания – это является признаком включения блока управления. Характерный щелчок должен сопровождать срабатывание главного реле. Через главное реле подается напряжение на основные элементы ЭСУД. После запуска двигателя, когда обороты двигателя превысили 1000 об/мин, лампа гаснет – ее выключает блок управления.

Система самодиагностики блока управления определяет неисправности в работе ЭСУД. О наличие любой неисправности блок управления сигнализирует водителю с помощью лампы «Проверь двигатель» - лампа загорается примерно через 40 сек после определения неисправности.

Включенная лампа при работающем двигателе не означает, что неисправность (диагностируемая текущая ошибка) имеет место в данный момент. Лампа может гореть, предупреждая водителя о том, что ошибка была определена ранее, и код ее занесен в память блока управления (сохраненная неисправность).

Если ездовые качества автомобиля резко не ухудшаются, скорее всего, включение лампы говорит о сохраненной неисправности. Необходимо проверить код сохраненной неисправности и провести проверки в работе системы. Опыт показывает, что первое появление неисправности элемента системы или его цепей управления говорит о возможном отказе этого узла в ближайшее время.

2. Узел дроссельной заслонки

На первый взгляд, узел дроссельной заслонки представляет собой несложное механическое устройство. На нем располагается датчик положения дроссельной заслонки и шаговый мотор (регулятор ХХ). В комплексе этот узел должен соответствовать строгим техническим условиям. Отклонение характеристик узла дроссельной заслонки от этих ТУ существенно влияет на поведение двигателя в переходных режимах: разгон, торможение, движение накатом, работа на режиме холостого хода, запуск двигателя. Исправность датчика положения дроссельной заслонки и шагового двигателя не гарантируют правильную работу системы при некачественном исполнении механики и конструкции дроссельной заслонки.

Узел дроссельной заслонки является в системе устройством, через которое водитель задает требуемую скорость движения автомобиля. Нажимая на педаль дроссельной заслонки (газа), он изменяет пропускную способность впускного коллектора для подачи воздуха в двигатель.

Вторая задача дроссельного узла заключается в поддержании байпасного канала (канал ХХ) в таком режиме, чтобы при отказе водителя от управления дросселем (выключение КПП, торможение, движение накатом - во всех этих случаях дроссельная заслонка закрыта) этот канал обеспечивал необходимое наполнение двигателя воздухом для поддержания заданных системой оборотов вращения коленчатого вала. Этот режим реализуется с помощью шагового мотора, установленного в узле дроссельной заслонки.

Некачественное исполнение узла дроссельной заслонки (несоответствие ТУ), как правило, вызывает следующие неисправности в работе:

Медленное снижение оборотов двигателя после закрытия дроссельной заслонки.
Двигатель глохнет при резком снижении нагрузки (выключение КПП, движение накатом).
Затрудненный пуск горячего двигателя с закрытым дросселем.


Перечисленные неисправности могут быть вызваны и другими причинами, например, сбоями в системе зажигания, топливоподачи, неисправностью датчика расхода воздуха. Но эти неисправности, если они есть, проявляются и на других режимах работы двигателя.

3. Датчик положения дросселя


Располагается на узле дроссельной заслонки и определяет степень открытия дроссельной заслонки. Система использует показания датчика дроссельной заслонки для следующих режимов работы:
На режиме пуска двигателя подача топлива корректируется по степени открытия дросселя (увеличивается при открытом дросселе). Но при открытии дросселя более 90% система перестает подавать топливо в двигатель. В этом режиме можно реализовать продувку двигателя при прокрутке стартером.
В рабочих режимах положение дроссельной заслонки 0% означает выход на режим холостого хода. В этом случае задача системы – поддерживать заданный уровень частоты вращения коленчатого вала в зависимости от показаний датчика температуры и скорости автомобиля. Блок управления пытается снизить обороты двигателя, управляя режимом блокировки топливоподачи до границы, с которой включается программный регулятор холостого хода, обеспечивающий с помощью шагового мотора и угла опережения зажигания стабильную работу двигателя на заданных оборотах.
Во время движения автомобиля, при показаниях датчика дроссельной заслонки выше определенного значения, система с учетом оборотов двигателя обеспечивает мощностной режим топливоподачи. Расчет времени открытия форсунки в зависимости от расхода воздуха определяется параметром обогащения состава топливно-воздушной смеси по таблицам, зашитым в памяти блока управления.
В резервных режимах, при выходе из строя датчика массового расхода показания датчика дроссельной заслонки определяют наполнение цилиндров воздухом для расчета топливоподачи в двигатель и установки угла опережения зажигания.

Нужно понимать, что система пользуется показаниями датчика положения дросселя не только для определения режима работы (холостой ход, мощностной режим, продувка двигателя при запуске, работа в резервных режимах), но и проводит коррекцию подачи топлива в двигатель в зависимости от скорости изменения положения дроссельной заслонки (в аналогии с карбюратором – ускорительный насос).

Ресурс работы датчиков российских производителей оставляет желать лучшего. Стирание резистивного слоя на внутренних контактах датчика может приводить к ряду сбоев в работе системы. Переход на бесконтактный датчик поможет выправить ситуацию.

Как правило, показания датчика нарушаются в положениях, где он чаще всего и работает. Это нулевое (или близкое к нему) положение дроссельной заслонки.

Характерные сбои в работе системы при неисправном датчике дроссельной заслонки:
Зависание оборотов холостого хода на уровне 1500-3000 в зависимости от температуры двигателя (Это резервный режим работы системы, он вызван неисправностью датчика, система в этом случае не регулирует обороты холостого хода).
Резкие рывки при наборе скорости. Вызываются резкими провалами в показаниях положения дроссельной заслонки

Неисправность датчика положения дроссельной заслонки достаточно хорошо определяется системой самодиагностики блока управления. При плохом датчике загорается лампа «Проверь двигатель» и в память блока заносится соответствующий код неисправности. Когда появляется такой код неисправности, а вы не заметили сбоев в работе системы, проверьте крепление датчика и его разъем. И будьте готовы к замене датчика через некоторое время.

Если при наличии перечисленных неисправностей система самодиагностики не выдает кода неисправности по датчику дроссельной заслонки, не торопитесь его менять. Признаки, перечисленные выше, скорее всего, вызваны другими причинами.

4. Шаговый мотор (регулятор ХХ)


Шаговый мотор установлен в байпасном канале узла дроссельной заслонки. Положение вала шагового мотора определяет проходное сечение байпасного канала, необходимое для устойчивой работы двигателя при закрытой дроссельной заслонке.

В системе управления шаговый мотор выполняет несколько основных функций:
Прогрев двигателя после запуска. Система определяет тепловое состояние двигателя по датчику температуры охлаждающей жидкости и автоматически станавливает обороты холостого хода (минимальные обороты при закрытой дроссельной заслонке). С помощью шагового мотора в этом случае задается такое сечение байпасного канала, при котором двигатель способен поддерживать эти обороты.
При открытии дроссельной заслонки весь воздух в двигатель поступает через сечение дроссельной заслонки, а байпасный канал должен быть подготовлен к резкому закрытию дросселя и сбросу нагрузки (отключение КПП). Система отслеживает с помощью шагового мотора такое сечение байпасного канала (в зависимости от оборотов двигателя, скорости автомобиля и положения дроссельной заслонки) при котором в случае сброса нагрузки должно быть обеспечено плавное снижение оборотов коленчатого вала до заданных оборотов холостого хода.
Третьей функцией шагового мотора является компенсация контролируемой блоком управления нагрузки (включение/выключение вентилятора, кондиционера и т.д.). В режиме холостого хода система корректирует положение шагового мотора до включения/выключения нагрузки. Тем самым компенсируется мощность, подключаемой этой нагрузки (компенсирует провал оборотов в режиме холостого хода).

Шаговый мотор и называют регулятором холостого хода, но он выполняет лишь перечисленные функции. Заданные обороты холостого хода в пределах ±50 об/мин поддерживаются в основном быстрым контуром управления – регулятором по углу опережения зажигания. Раскачка оборотов в режиме холостого хода зависит именно от этого контура и влияния возмущений в системе топливоподачи. Шаговый мотор определяет медленную составляющую в регулировании, отслеживая режимные переходы системы управления.

Выход из строя шагового двигателя приводит к явным сбоям в системе: невозможность работы двигателя на холостом ходу, повышение оборотов ХХ, увеличивающихся по мере прогрева двигателя. Эти неисправности возникают и при неполадках в цепях управления шаговым мотором и могут быть определены при помощи тестера ДСТ-2М, который позволяет задавать положение шагового мотора как параметр блока управления.

Выбрав режим управления исполнительными механизмами в тестере, нужно подвигать шаговый мотор с помощью блока управления в ту или иную сторону. Если при этом обороты двигателя не изменяются, расход воздуха остается постоянным, а система определяет постоянное положение шагового мотора, неисправность шагового мотора или цепей его управления очевидна.

Проверка шагового мотора с помощью тестера может и не дать результата. Система будет правильно отрабатывать ваши попытки закрыть или открыть байпасный канал. Но при этом при эксплуатации автомобиля останутся зависания оборотов при отключении КПП и заглохания двигателя при движении накатом и невозможность запуска двигателя без помощи дроссельной заслонки. Появление в комплексе этих неисправностей говорит о неисправности шагового двигателя или его цепей управления. И даже при исправных цепях, шаговый мотор может просто неправильно выполнять команды системы управления. Вместо движения вперед отрабатывает движение назад или наоборот. Это можно наблюдать, если снять шаговый мотор и специальным тестером задавать ему движения в разные стороны. Алгоритм управления шагового мотора достаточно сложен, и сбои в его работе могут быть выявлены только специальным тестером, например, ДСТ-6C.

Блок управления может выдавать код неисправности шагового мотора, но не всегда это означает, что шаговый мотор или цепи его управления действительно вышли из строя. К сожалению, этот код может появиться и при исправном шаговом моторе. Прежде чем разбираться с шаговым мотором, убедитесь, что заданные обороты холостого хода в системе выставляются правильно по температуре двигателя и режим холостого хода определен в системе (положение дроссельной заслонки 0%).

Совет: Если смазывать механическую часть шагового мотора литолом, то он работает значительно лучше и дольше. После смазки плохой шаговый мотор часто восстанавливает свою работоспособность.

5. Датчик температуры охлаждающей жидкости


Этот датчик – самый надежный из всех датчиков системы российского производства. По этому датчику система определяет тепловое состояние двигателя и принимает решение о коррекции параметров (обороты ХХ, обогащение подачи топливной смеси, угол опережения зажигания, включение - выключение вентилятора и т.д.).

Показатель температуры двигателя на панели приборов автомобиля не имеет отношения к этому датчику, и его показания могут не совпадать с показаниями тестера, поскольку температура в этом случае определяется другим датчиком, установленным в рубашке двигателя, а также зависит от состояния самой панели управления.

Выход из строя датчика температуры приводит к целому набору неисправностей в автомобиле, от явной невозможности запустить двигателя до непонятного повышения расхода топлива.

Не торопитесь менять датчик температуры, тем более что выход его из строя легко проверяется системой самодиагностики. Неисправности, связанные с датчиком температуры – несвоевременное включение или просто невключение вентилятора (тосол кипит), медленный прогрев двигателя (повышенный расход топлива) – зачастую имеют другие причины: выход из строя термостата, негерметичность системы охлаждения (пробка на расширительном бачке не герметична), плохое качество тосола, неисправность цепей управления вентилятора и т.д.

Если отсоединить разъем датчика на работающем двигателе, то система управления перейдет на резервный режим работы по температуре, при котором будет включен вентилятор охлаждения (одна из быстрых проверок цепи управления вентилятором). Если запускать двигатель с отключенным датчиком температуры, то нужно учитывать, что система в этот момент температуру считает нулевой, по мере работы такого двигателя система управления сама выставляет температуру (увеличивает) в зависимости от времени работы, вентилятор при этом будет всегда включен. Пуск горячего или холодного (с температурой ниже 10 градусов) двигателя с отключенным датчиком температуры будет затруднительным.

Прежде чем менять датчик температуры, убедитесь в исправности цепей его подключения и правильном соединении разъемов (возможно при размыкании и замыкании разъема погнута ножка в клеммном соединении самого датчика).

6. Датчик массового расхода воздуха

Датчик массового расхода воздуха устанавливается на входе воздушного тракта после воздушного фильтра.

В процессе работы электронная схема поддерживает постоянный перегрев нити чувствительного элемента датчика на заданном уровне. Чувствительный элемент датчика (нить) охлаждается потоком воздуха, проходящего через двигатель. Электрическая мощность, требуемая для поддержания заданного превышения температуры, и является параметром для определения массового расхода воздуха, проходящего через датчик.

Выходным сигналом расходомера служит падение напряжения на прецизионном резисторе, включенном в смежное с нагреваемой нитью плечо измерительного моста. Это напряжение электронный блок управления преобразует в часовой расход воздуха (кг/час). Масса рассчитывается с учетом обратных выбросов воздуха. Обратные выбросы (движение воздуха против всасывания) присутствуют на различных режимах работы двигателя и вызваны поступательными движениями поршней двигателя и его конструктивными характеристиками, определяющими аэродинамические свойства впускного тракта.

Из вышесказанного следует, что масса воздуха, проходящего через двигатель, определяется косвенным образом, и непонятно, как учитывается состояние самого воздуха: влажность, содержание кислорода и т.д. А это является существенным фактором для мощностных характеристик топливной смеси.

Показания датчика массового расхода являются для системы основным параметром, определяющим топливоподачу и угол опережения зажигания. Алгоритм расчета массового расхода воздуха через двигатель определяется блоком управления синхронно с вращением коленчатого вала (кг/час). Блок рассчитывает цикловое наполнение цилиндра воздухом в соответствии с оборотами двигателя (мг/такт). После этого рассчитывается порция топлива (цикловая подача топлива, мг/такт), которая должна попасть в цилиндр через форсунку к моменту закрытия впускного клапана. Все коррекции циклового наполнения и цикловой подачи по температуре двигателя, динамике дроссельной заслонки, частоте вращения коленчатого вала выполняются программным обеспечением блока управления в соответствии с внутренними настройками для конкретной комплектации системы управления.

Время открытия форсунки (мс) определяется в соответствии с заданными параметрами форсунки, корректировкой по напряжению бортовой сети и заданной системой впрыска топлива: одновременный, попарно-параллельный, фазированный.

Эта сложная взаимосвязь расчетных и заданных параметров предполагает наличие в составе системы управления элементов (в частности датчика массового расхода), строго определенных комплектацией этой системы.

Уход характеристик датчика массового расхода воздуха, подсосы воздуха во впускной тракт после датчика, нестабильность питающего напряжения датчика и т.д. существенно сказываются на работе двигателя. Проблемы, связанные со стабильностью работы на стационарных режимах, динамическими свойствами автомобиля, экономичностью работы могут определяться неправильными показаниями датчика массового расхода.

Неполадки в цепи датчика или полный его отказ определяются системой самодиагностики, и соответствующий код неисправности заносится в память. Это самая простая неисправность, и она может быть легко исправлена. Другое дело, когда нет неисправностей в памяти блока управления, а двигатель после запуска глохнет. Снимите разъем с датчика массового расхода, если двигатель после запуска работает на повышенных оборотах (резервный режим работы), замените датчик. Еще хуже, когда автомобиль имеет большой расход топлива, а все проверки ничего не дают. Попробуйте поменять датчик, это помогает, только следите, что бы датчик имел тип, соответствующий вашей системе управления.

Попадание масла на чувствительный элемент датчика приводит к нарушению в его показаниях. Масло может попадать через систему рециркуляции картерных газов, если уровень масла в двигателе превышает максимум. В этом случае промывка чувствительного элемента спиртом поможет восстановить работоспособность датчика.

7. Датчик положения коленчатого вала

Датчик положения коленчатого вала индукционного типа устанавливается рядом со специальным диском, жестко укрепленным на коленчатом вале. Вместе с ним датчик обеспечивает угловую синхронизацию работы блока управления. Пропуск двух зубьев из 60 на спец-диске позволяет системе определить ВМТ 1-ого или 4-ого цилиндра. Зазор между датчиком и вершиной зуба спец-диска находится в пределах 0,8-1,0 мм. Сопротивление обмотки датчика 880-900 Ом. Для снижения уровня помех провод с датчика коленчатого вала защищен экраном.

После включения зажигания управляющая программа блока ожидает прихода импульсов синхронизации с датчика положения коленчатого вала. Блок выдает импульсы для открытия топливных форсунок и импульсы для модуля зажигания только после синхронизации своей работы с процессом вращения коленчатого вала. Синхронизация означает, что управляющая программа правильно определяет все 58 зубьев с датчика и видит пропуск двух зубьев в расчетном временном диапазоне. Запуск двигателя и его стабильная работа определяется четкой синхронизацией импульсов с датчика положения коленчатого вала и импульсов, управляющих открытием форсунок и модулем зажигания.